263 research outputs found

    Testing covariance models for MEG source reconstruction of hippocampal activity

    Get PDF
    Beamforming is one of the most commonly used source reconstruction methods for magneto- and electroencephalography (M/EEG). One underlying assumption, however, is that distant sources are uncorrelated and here we tested whether this is an appropriate model for the human hippocampal data. We revised the Empirical Bayesian Beamfomer (EBB) to accommodate specific a-priori correlated source models. We showed in simulation that we could use model evidence (as approximated by Free Energy) to distinguish between different correlated and uncorrelated source scenarios. Using group MEG data in which the participants performed a hippocampal-dependent task, we explored the possibility that the hippocampus or the cortex or both were correlated in their activity across hemispheres. We found that incorporating a correlated hippocampal source model significantly improved model evidence. Our findings help to explain why, up until now, the majority of MEG-reported hippocampal activity (typically making use of beamformers) has been estimated as unilateral

    Non-invasive measurements of ictal and interictal epileptiform activity using optically pumped magnetometers

    Get PDF
    Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big. Moreover, ictal recordings with fixed-helmet systems are problematic because of limited movement tolerance and/or logistical considerations. Optically Pumped Magnetometers (OPMs) can be placed directly on the scalp, thereby improving SNR and enabling recordings during seizures. We aimed to demonstrate the performance of OPMs in a clinical population. Seven patients with challenging cases of epilepsy underwent MEG recordings using a 12-channel OPM-system and a 306-channel cryogen-based whole-head system: three adults with known deep or weak (low SNR) sources of interictal epileptiform discharges (IEDs), along with three children with focal epilepsy and one adult with frequent seizures. The consistency of the recorded IEDs across the two systems was assessed. In one patient the OPMs detected IEDs that were not found with the SQUID-system, and in two patients no IEDs were found with either system. For the other patients the OPM data were remarkably consistent with the data from the cryogenic system, noting that these were recorded in different sessions, with comparable SNRs and IED-yields overall. Importantly, the wearability of OPMs enabled the recording of seizure activity in a patient with hyperkinetic movements during the seizure. The observed ictal onset and semiology were in agreement with previous video- and stereo-EEG recordings. The relatively affordable technology, in combination with reduced running and maintenance costs, means that OPM-based MEG could be used more widely than current MEG systems, and may become an affordable alternative to scalp EEG, with the potential benefits of increased spatial accuracy, reduced sensitivity to volume conduction/field spread, and increased sensitivity to deep sources. Wearable MEG thus provides an unprecedented opportunity for epilepsy, and given its patient-friendliness, we envisage that it will not only be used for presurgical evaluation of epilepsy patients, but also for diagnosis after a first seizure

    Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci

    Get PDF
    The first member of the pleuromutilin (PLM) class suitable for systemic antibacterial chemotherapy in humans recently entered clinical use, underscoring the need to better understand mechanisms of PLM resistance in disease-causing bacterial genera. Of the proteins reported to mediate PLM resistance in staphylococci, the least-well studied to date is Sal(A), a putative ABC-F NTPase that—by analogy to other proteins of this type—may act to protect the ribosome from PLMs. Here, we establish the importance of Sal proteins as a common source of PLM resistance across multiple species of staphylococci. Sal(A) is revealed as but one member of a larger group of Sal-type ABC-F proteins that vary considerably in their ability to mediate resistance to PLMs and other antibiotics. We find that specific sal genes are intrinsic to particular staphylococcal species, and show that this gene family is likely ancestral to the genus Staphylococcus. Finally, we solve the cryo-EM structure of a representative Sal-type protein (Sal(B)) in complex with the staphylococcal 70S ribosome, revealing that Sal-type proteins bind into the E site to mediate target protection, likely by displacing PLMs and other antibiotics via an allosteric mechanism

    Probing forces of menisci: what levels are safe for arthroscopic surgery

    Get PDF
    Purpose To facilitate effective learning, feedback on performance during arthroscopic training is essential. Less attention has been paid to feedback on monitoring safe handling of delicate tissues such as meniscus. The goal is to measure in vitro probing forces of menisci and compare them with a theoretical maximum probing force (TMPF). Method Menisci samples of ten cadavers were mounted on force platforms to measure probing forces up to 20 N in three directions. Nineteen subjects participated: six novices (experience 60 arthroscopies), and three faculty (>250 a year). All had to perform three tasks on each meniscus sample with an arthroscopic probe: push three times on the superior meniscal surface, perform one continuous run on the superior meniscal surface, and push three times on the inferior meniscal surface. The absolute maximum probing force (AMPF) was determined for each condition. A multivariable linear regression analysis was performed to assess the influence of experience on the force magnitude (P < 0.05). AMPFs were compared to the TMPF (estimated to be 8.5 N). Results The AMPF of the push task was on average 2.8 N (standard deviation (SD) of 0.8 N), of the continuous run task 2.5 N (SD 0.9 N), and of the pull task 3.9 N (SD 2.0 N). Significant difference was present between experts and novices (P < 0.05). The AMPFs are in the same order of magnitude as the TMPF. Conclusion The results indicate the necessity of using a safety level for tissue manipulation when training arthroscopy and a value for is magnitude.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Flat feline faces: is brachycephaly associated with respiratory abnormalities in the domestic cat (Felis catus)?

    Get PDF
    There has been little research into brachycephalism and associated disorders in cats. A questionnaire aimed at cat owners was used to determine the relationship between feline facial conformation and owner-reported cat management requirements and respiratory abnormalities. Owner-submitted photographs of cats were used to develop novel measures of skull conformation. One thousand valid questionnaires were received. Within these there were 373 valid photographs that allowed measurement of muzzle ratio (M%) and 494 that allowed nose position ratio (NP%). The data included 239 cats for which both measurements were available. Owners reported lifestyle factors (e.g. feeding type, grooming routine, activity level), physical characteristics (e.g. hair length) and other health characteristics of their cat (e.g. tear staining, body condition score). A composite respiratory score (RS) was calculated for each cat using their owner’s assessment of respiratory noise whilst their cat was asleep and then breathing difficulty following activity. Multivariate analyses were carried out using linear models to explore the relationship between RS and facial conformation, and lifestyle risk factors. The results showed that reductions in NP% and M% were significantly associated with RS (P < 0.001 and P = 0.026, respectively) and that the relationship was significantly negatively correlated (r = -0.56, P < 0.001 for both). Respiratory score was also significantly associated with increased presence of tear staining (P < 0.001) and a sedentary lifestyle (P = 0.01). This study improves current knowledge concerning cats with breeding-related alterations in skull confirmation and indicates that brachycephalism may have negative respiratory implications for cat health and welfare, as has been previously shown in dogs

    Intermediate predator naïveté and sex-skewed vulnerability predict the impact of an invasive higher predator

    Get PDF
    The spread of invasive species continues to reduce biodiversity across all regions and habitat types globally. However, invader impact prediction can be nebulous, and approaches often fail to integrate coupled direct and indirect invader effects. Here, we examine the ecological impacts of an invasive higher predator on lower trophic groups, further developing methodologies to more holistically quantify invader impact. We employ functional response (FR, resource use under different densities) and prey switching experiments to examine the trait- and density-mediated impacts of the invasive mosquitofish Gambusia affinis on an endemic intermediate predator Lovenula raynerae (Copepoda). Lovenula raynerae effectively consumed larval mosquitoes, but was naïve to mosquitofish cues, with attack rates and handling times of the intermediate predator unaffected by mosquitofish cue-treated water. Mosquitofish did not switch between male and female prey, consistently displaying a strong preference for female copepods. We thus demonstrate a lack of risk-reduction activity in the presence of invasive fish by L. raynerae and, in turn, high susceptibility of such intermediate trophic groups to invader impact. Further, we show that mosquitofish demonstrate sex-skewed predator selectivity towards intermediate predators of mosquito larvae, which may affect predator population demographics and, perversely, increase disease vector proliferations. We advocate the utility of FRs and prey switching combined to holistically quantify invasive species impact potential on native organisms at multiple trophic levels

    Clostridium difficile infection in Polish pediatric outpatients with inflammatory bowel disease

    Get PDF
    The prevalence of Clostridium difficile infection (CDI) in pediatric patients with inflammatory bowel disease (IBD) is still not sufficiently recognized. We assessed the prevalence of CDI and recurrences in outpatients with IBD. In addition, the influence of IBD therapy on CDI and antimicrobial susceptibility of the potentially causative C. difficile strains was assessed. This was a prospective, single-center, observational study. All specimens were obtained between January 2005 and January 2007 from the IBD outpatient service and screened for C. difficile and its toxins. C. difficile isolates were genotyped by PCR ribotyping. Diagnosis of Crohn’s disease (CD) and ulcerative colitis (UC) was based on Porto criteria. Severity of disease was assessed using the Hyams scale (for Crohn’s disease) and the Truelove–Witts scale (for ulcerative colitis). One hundred and forty-three fecal samples from 58 pediatric IBD patients (21 with Crohn’s disease and 37 with ulcerative colitis) were screened. The risk of C. difficile infection was 60% and was independent of disease type (CD or UC) (χ2 = 2.5821, df = 3, p = 0.4606). About 17% of pediatric IBD patients experienced a recurrence of CDI. All C. difficile strains were susceptible to metronidazole, vancomycin and rifampin. A high prevalence of C. difficile infection and recurrences in pediatric outpatients with IBD was observed, independent of disease type. There was no significant correlation between C. difficile infection and IBD therapy. PCR ribotyping revealed C. difficile re-infection and relapses during episodes of IBD in pediatric outpatients

    Pharmacologic targeting of renal ischemia-reperfusion injury using a normothermic machine perfusion platform.

    Get PDF
    Normothermic machine perfusion (NMP) is an emerging modality for kidney preservation prior to transplantation. NMP may allow directed pharmacomodulation of renal ischemia-reperfusion injury (IRI) without the need for systemic donor/recipient therapies. Three proven anti-IRI agents not in widespread clinical use, CD47-blocking antibody (αCD47Ab), soluble complement receptor 1 (sCR1), and recombinant thrombomodulin (rTM), were compared in a murine model of kidney IRI. The most effective agent was then utilized in a custom NMP circuit for the treatment of isolated porcine kidneys, ascertaining the impact of the drug on perfusion and IRI-related parameters. αCD47Ab conferred the greatest protection against IRI in mice after 24 hours. αCD47Ab was therefore chosen as the candidate agent for addition to the NMP circuit. CD47 receptor binding was demonstrated by immunofluorescence. Renal perfusion/flow improved with CD47 blockade, with a corresponding reduction in oxidative stress and histologic damage compared to untreated NMP kidneys. Tubular and glomerular functional parameters were not significantly impacted by αCD47Ab treatment during NMP. In a murine renal IRI model, αCD47Ab was confirmed as a superior anti-IRI agent compared to therapies targeting other pathways. NMP enabled effective, direct delivery of this drug to porcine kidneys, although further efficacy needs to be proven in the transplantation setting
    corecore